Draw the Molecular Orbital Energy level diagram for N₂

- Large 2s-2px interaction

- Electron Configuration:

 \[\sigma_{1s}^2 \sigma_{2s}^2 \sigma_{2p}^2 \pi_{2p_x}^2 \pi_{2p_y}^2 \]

- Bond Order:

 \[BO = \frac{1}{2} (10e^- - 4e) = 3 \]

- Number of unpaired electrons and magnetic properties:

 \(\uparrow \uparrow \) dia magnetic

- Bond Length: short

- Bond Dissociation Energy: high

- Bond Strength: high
Problems:

1. Which has the Highest Bond Energy? Why?
 - a. B_2 or B_2^{2+}
 \[\text{Bo} = 1 \]
 - b. C_2 or C_2^{-2}
 \[\text{Bo} = 2 \]
 Bond Energy \propto Bond order

2. Which has the Shortest Bond Length? Why?
 No bond!
 - a. Ne_2 or Ne_2^{-2}
 \[\text{Bo} = 0 \]
 Bond length $\propto \frac{1}{\text{Bond order}}$
 - b. F_2 or F_2^{-1}
 \[\text{Bo} = 1 \]
 Bond length $\propto \frac{1}{\text{Bond order}}$

3. Which has the Lowest Bond Dissociation Energy? Why?
 - a. C_2 or C_2^{-2}
 \[\text{Bo} = 2 \]
 Bond Dissociation \propto Bond order
 - b. C_2^{-2}
 Bond Dissociation \propto Bond order
 Bond Energy