OXIDATION NUMBERS

1. The oxidation number for oxygen is usually -2.
 Exceptions: O₂ and peroxides
 (\(\text{C} = \text{O} \) bond \(\Rightarrow \) ex. H₂O₂, Na₂O₂, and BaO₂ and etc.)

2. The oxidation number of hydrogen is usually +1.
 Exceptions: H₂ and hydrides Ex. NaH, BaH₂, and etc.

3. Oxidation numbers of an atom or group of atoms is equal to the charge on the species:
 a. The oxidation number on free elements is zero.
 Ex. H, Fe, Cr, Xn...etc.
 b. The oxidation number for elements when combined with themselves is zero
 Ex. H₂, S₈, Br₂...etc.)
 c. The oxidation number of a monatomic ion is equal to its charge.
ION	OXIDATION NUMBER
X⁺	+1
Ca²⁺	+2
Fe³⁺	+3
S²⁻	-2

d. The sum of the oxidation numbers of the elements in a compound is equal to zero
 \[\text{SO}_2 \]
 \[S = +4 \quad \text{SC}_3 \]
 \[C = +3 \quad \text{CrCl}_3 \]
 \[C = +6 \quad \text{CrCl}_6 \]
 \[C₂O₂ \]
 \[C = +4 \quad \text{CO}_2 \]
 \[C = +2 \quad \text{CC} \]

e. The sum of the oxidation numbers of the elements in a polyatomic ion is equal to its net charge.
 \[\text{CO}_3^{2⁻} \]
 \[C = +4 \quad \text{C}_2\text{O}_4^{2⁻} \]
 \[C = +3 \quad \text{BrO}⁻ \]
 \[Br = +7 \quad \text{BrO}_3⁻ \]
 \[S²⁻ \]
 \[S = +6 \quad \text{SO}_4^{2⁻} \]
 \[S = +4 \]

f. The sum of the oxidation numbers of the elements in a polyatomic ion is equal to its net charge.
 \[\text{Na}_2\text{CO}_3 \]
 \[C = +4 \quad \text{Fe}_2\text{O}_4 \]
 \[C = +3 \quad \text{Sn}_2(\text{PO}_4)_4 \]
 \[S_n = +4 \quad P = +5 \]
 \[\text{HBrO} \]
 \[Br = +1 \quad \text{Zn}(\text{BrO}_3)_2 \]
 \[Br = +5 \quad \text{Cu}_2\text{SO}_3 \]
 \[C_u = +1 \quad S = +4 \]