REACTIONS OF SALTS WITH WATER

Hydrolysis as applied to water solutions of inorganic compounds, can be defined as the reaction of water with one or both ions of a salt to form a weak acid and a OH- or a weak base and H+ ion or both. For example,

In a solution of NaCN: \[\text{CN}^- + \text{H}_2\text{O} \rightleftharpoons \text{HCN} + \text{OH}^- \] (weak acid forms)

In a solution of NH₄Cl: \[\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+ \] (weak base forms)

In a solution of NaCl: (no hydrolysis)

In a solution of NH₄C₂H₃O₂: (both, a weak acid and a weak base, form)

THE EQUILIBRIUM CONSTANT FOR HYDROLYSIS REACTION

A quantitative measure of the extent to which a given salt will hydrolyze is given by the equilibrium constant of the hydrolysis reaction. Setting the K-expression in the usual way, we find for NaC₂H₃O₂, where

\[\text{C}_2\text{H}_3\text{O}_2^- (\text{aq}) + \text{H}_2\text{O} (\text{l}) \rightleftharpoons \text{HC}_2\text{H}_3\text{O}_2 (\text{aq}) + \text{OH}^- (\text{aq}) \]

\[K_b = \frac{[\text{HC}_2\text{H}_3\text{O}_2][\text{OH}^-]}{[\text{C}_2\text{H}_2\text{O}_2^-]} \]

Values for \(K_b \) cannot be found in tables. Instead, they can be derived from values of other equilibrium constants that are found in tables. Multiplying both numerator and denominator of the expression shown above by \(\text{H}^+ \) gives:

\[K_b = \frac{[\text{HC}_2\text{H}_3\text{O}_2][\text{OH}^-][\text{H}^+]}{[\text{C}_2\text{H}_2\text{O}_2^-][\text{H}^+]} = \frac{1}{K_a} \cdot K_w \]

\(K_a \) is the equilibrium constant for the ionization of \(\text{HC}_2\text{H}_3\text{O}_2 \) found in tables.

For the hydrolysis reaction given above, we can write:

\[K_b = \frac{[\text{HC}_2\text{H}_3\text{O}_2][\text{OH}^-]}{[\text{C}_2\text{H}_2\text{O}_2^-]} = \frac{K_w}{K_a} \]

The numerical value of \(K_b \) for the above equilibrium, then, is

\[K_b = 1.0 \times 10^{-14} = 5.5 \times 10^{-10} \]

\[\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} \]
THE WEAKER THE ACID OR BASE FORMED THE GREATER THE PERCENT OF HYDROLYSIS

\[K_a \text{ for HCN} = 4.0 \times 10^{-10} \]
\[K_a \text{ for } HNO_2 = 4.5 \times 10^{-4} \]

Which would you expect to hydrolyze most, KCN or KNO₂? _________

Would the pH of these salts be more than or less than 7? __________

Which salt would have a pH closer to 7? __________

SIMULTANEOUS HYDROLYSIS OF CATION AND ANION

If both, cation and anion, undergo hydrolysis, the salt will be more strongly hydrolyzed than it would be for either ion separately. NH₄CN will hydrolyze more than either NH₄Cl or KCN.

\[
\begin{align*}
\text{NH}_4^+ + \text{H}_2\text{O} &\rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+ \\
\text{CN}^- + \text{H}_2\text{O} &\rightleftharpoons \text{HCN} + \text{OH}^-
\end{align*}
\]

The \text{H}_3\text{O}^+ from the hydrolysis of \text{NH}_4^+ combines with the \text{OH}^- from the hydrolysis of \text{CN}^- forming water. The equilibrium of both reactions will shift to the right.

pH OF ACID SALT SOLUTIONS

An acid salt is one that still contains H as part of the anion (HSO₄⁻, H₂PO₄⁻, HCO₃⁻, etc) Will the solution of such a salt be acidic due to the reaction:

\[
\text{HCO}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{CO}_3^{2-} + \text{H}_3\text{O}^+ \quad K_{a2} = 4.7 \times 10^{-11}
\]

Or will it be basic due to the reaction:

\[
\text{HCO}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 + \text{OH}^- \quad K_b = \frac{K_w}{K_{a1}} = 1.0 \times 10^{-14}
\]

\[
K_{a1} = 4.2 \times 10^{-7}
\]

The simplest way to decide which reaction predominates is to compare the values of the two equilibrium constants, \(K_b \) and \(K_{a2} \), above. Since \(K_b \) is larger than \(K_{a2} \), the second reaction predominates and the solution is basic.

Today you will look up tabulated values of equilibrium constants to predict for a given salt which reaction will predominate, then check your prediction experimentally.
EXPERIMENT

Check out a pH pen from the stockroom.

A. THE EXTENT OF HYDROLYSIS OF CERTAIN SALTS

Place the following 0.10 M solutions in separate wells of a spot plate. NaC₂H₃O₂, NH₄Cl, NaCl, Na₂CO₃, NH₄C₂H₃O₂, NaHSO₄, FeCl₃, NaH₂PO₄, NaHCO₃. Use the pH pen to measure the pH of each solution. Remember to rinse the tip of the pH pen with tap water between tests. Record the results. You will use your measured pH values for later calculations.

B. HYDROLYSIS OF AMMONIUM SALTS

Remove the stoppers and cautiously smell the odor from bottles of solid ammonium chloride, solid ammonium carbonate, and solid ammonium acetate from the Chem 111 shelves.

Which has the strongest odor? __________

Which has the weakest odor? __________

There is enough water adsorbed on the surface of the apparently dry crystals to make hydrolysis possible. Explain the relative odors of the three salts in terms of the extent of hydrolysis of each, and the relative values of Kₐ or Kₕ for the hydrolysis reactions.

C. HYDROLYSIS OF Al³⁺ ION

Mix about 1 g of dry Al₂(SO₄)₃ and 1 g of dry NaHCO₃. Is there a reaction? _____

Add a few milliliters of H₂O. Is there a reaction? _____ Write the evidence for the reaction, if there is any.
A. THE EXTENT OF HYDROLYSIS OF CERTAIN SALTS

Measure the pH of distilled H_2O: ____________ Why is it different from 7?

1. MEASURE THE pH of 0.10 M SALT SOLUTIONS

<table>
<thead>
<tr>
<th>0.10 M solutions</th>
<th>pH measured</th>
<th>pOH calculated</th>
<th>[H_3O^+] calculated</th>
<th>[OH^-] calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH_4C_2H_3O_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH_4Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na_2CO_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaC_2H_3O_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaHSO_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeCl_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaH_2PO_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaHCO_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. **THE HYDROLYSIS REACTIONS**

Write net-ionic equations for the reaction of each salt with water below to illustrate the observed pH given on page 5. If there is no reaction, write N.R.

<table>
<thead>
<tr>
<th>0.10 M solutions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄C₂H₃O₂</td>
<td>a.</td>
</tr>
<tr>
<td></td>
<td>b.</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td></td>
</tr>
<tr>
<td>NaC₂H₃O₂</td>
<td></td>
</tr>
<tr>
<td>NaHSO₄</td>
<td></td>
</tr>
<tr>
<td>FeCl₃</td>
<td></td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td></td>
</tr>
<tr>
<td>NaHCO₃</td>
<td></td>
</tr>
</tbody>
</table>
3. **CALCULATE PERCENT HYDROLYSIS FROM TABULATED ‘K’ VALUES AND FROM MEASURED pH VALUES**
 a. 0.10 M NaC₂H₃O₂
 1. Write the net ionic equation for the hydrolysis of NaC₂H₃O₂.

 2. Write the K_b expression for the hydrolysis reaction.

 3. Calculate the value of K_b for this salt from tabulated values of equilibrium constants. (K_a for HC₂H₃O₂ = 1.8 x 10⁻⁵)
 Setup:

 4. From the above K_b find the theoretical $[OH^-]$, then calculate the theoretical % hydrolysis.
 Equilibrium equation
 \[
 \text{C}_2\text{H}_3\text{O}_2^- (\text{aq}) + \text{H}_2\text{O} \rightleftharpoons \text{HC}_2\text{H}_3\text{O}_2 (\text{aq}) + \text{OH}^- (\text{aq})
 \]

 | Initial concentration | 0.10 | 0 | 0 |
 | Change in concentration | -x | + x | + x |
 | Equilibrium concentration | 0.10-x | x | x |

 \[
 K_b = \frac{[OH^-]}{[C_2H_3O_2^-]} = \frac{x}{0.10-x} = \frac{[OH^-]}{M_{C_2H_3O_2^-} (\text{initial})} = \frac{[OH^-]_{\text{theoretical}}}{M_{C_2H_3O_2^-} (\text{initial})} = \frac{[OH^-]_{\text{theoretical}}}{x} = \frac{[OH^-]_{\text{theoretical}}}{0.10-x}=
 \]

 \[
 \%
 \text{hydrolysis (theoretical)} = \frac{[OH^-]_{\text{theoretical}}}{M_{C_2H_3O_2^-} (\text{initial})}
 \times 100
 = \frac{[OH^-]_{\text{theoretical}}}{0.10-x} \times 100
 \]

 \[
 \%
 \text{hydrolysis (theoretical)} = \frac{[OH^-]_{\text{theoretical}}}{0.10-x} \times 100
 \]

 5. Calculate experimental % hydrolysis using your experimental $[OH^-]$ for the salt solution from page 5.
 Setup:

 \[
 \%
 \text{hydrolysis (experimental)} = \frac{[OH^-]_{\text{experimental}}}{0.10-x} \times 100
 \]

 \[
 \%
 \text{hydrolysis (experimental)} = \frac{[OH^-]_{\text{experimental}}}{0.10-x} \times 100
 \]
b. \(0.10 \text{ M } \text{Na}_2\text{CO}_3\)

1. Write the net ionic equation for the hydrolysis of \(\text{Na}_2\text{CO}_3\).

2. Write the \(K_b\) expression for the hydrolysis reaction.

3. Calculate the value of \(K_b\) for this salt from tabulated values of equilibrium constants. (\(K_{a2}\) for \(\text{HCO}_3^- = 4.7 \times 10^{-11}\))

Setup:

4. From the above \(K_b\) find the theoretical \([\text{OH}^-]\), then calculate the theoretical % hydrolysis.

Equilibrium equation

\[
\text{CO}_3^{2-} (\text{aq}) + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- (\text{aq}) + \text{OH}^- (\text{aq})
\]

<table>
<thead>
<tr>
<th>Initial concentration</th>
<th>0.10</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in concentration</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>Equilibrium concentration</td>
<td>0.10-x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

\[
K_b = \frac{[\text{HCO}_3^-][\text{OH}^-]}{[\text{CO}_3^{2-}]}
\]

\[
x = [\text{OH}^-]_{(\text{theoretical})} = \frac{\text{M}}{\text{M}_{\text{CO}_3^{2-} (\text{initial})}} \times 100
\]

\[
\% \text{ hydrolysis}_{(\text{theoretical})} = \frac{\text{M}}{\text{M}_{\text{CO}_3^{2-} (\text{initial})}} \times 100
\]

5. Calculate experimental % hydrolysis using your experimental \([\text{OH}^-]\) for the salt solution from page 5.

Setup:

\[
\% \text{ hydrolysis}_{\text{experimental}} = \frac{\text{M}}{\text{M}_{\text{CO}_3^{2-} (\text{initial})}} \times 100
\]
Summary of part 3:
Copy the theoretical % hydrolysis of 0.10 M Na\text{C}_2\text{H}_3\text{O}_2 from section (a) part 4 on page 7. %
Copy the theoretical % hydrolysis of 0.10 M Na\text{2CO}_3 from section (b) part 4 on page 8. %
Which of the above ions hydrolyze more?

\((\text{C}_2\text{H}_3\text{O}_2^- \text{ or CO}_3^{2-})\)

Conclusion: The _______________ the acid formed, the greater the % hydrolysis.
(weaker, stronger)

4. HYDROLYSIS OF AMMONIUM SALTS
\(\text{NH}_4\text{Cl, NH}_4\text{C}_2\text{H}_3\text{O}_2, (\text{NH}_4)_2\text{CO}_3\)
The salt with the strongest odor of ammonia is: _______________
Write the hydrolysis equation for the:
a) Cation undergoing hydrolysis ____________________________
b) Anion undergoing hydrolysis ____________________________

The salt with the next strongest odor is _______________
Write the hydrolysis equation for the:
a) Cation undergoing hydrolysis ____________________________
b) Anion undergoing hydrolysis ____________________________

The salt with the least odor of ammonia is _______________
The one ion undergoing hydrolysis is _______________
Write the hydrolysis equation for that ion:

Which of the above salts will hydrolyze the least? _______________
Why? ________________________________

Compare the extent of hydrolysis of \(\text{NH}_4\text{C}_2\text{H}_3\text{O}_2\) and \((\text{NH}_4)_2\text{CO}_3\) by comparing the \(K_b\) values of \(\text{C}_2\text{H}_3\text{O}_2^-\) and \(\text{CO}_3^{2-}\) and their theoretical % hydrolysis.
\(K_b\) for \(\text{C}_2\text{H}_3\text{O}_2^- = ____________\), theoretical %hydrolysis on page 7 ____________\ %
\(K_b\) for \(\text{CO}_3^{2-} = ____________\), theoretical %hydrolysis on page 8 ____________\ %

From the theoretical % hydrolysis of the above ions and the odor of their ammonium salts, which would you say undergoing hydrolysis to a higher extent? _______________
Explain the effect of the % hydrolysis of the anion on the extent of hydrolysis of \(\text{NH}_4^+\)
C. HYDROLYSIS OF Al\(^{3+}\) ION:

1. Mix dry Al\(_2\)(SO\(_4\))\(_3\) and dry NaHCO\(_3\). Is there a reaction? ____________

2. Add a few ml of H\(_2\)O to the above mixture. Is there a reaction? _______

Give the evidence for the reaction: _______________________

Write a net-ionic equation to show the hydrolysis reaction of Al\(^{3+}\)

Net-ionic equation: _________________________________

Is the solution acidic or basic? ______________

Write a net-ionic equation to show the reaction of the produced H\(^{+}\) with the added HCO\(_3\)^-.

Net-ionic equation:___________________________________

Write an equation to show the formation of the produced gas.

Equation: ___

Add the three equations above. Drop out terms that appear on both sides, to obtain the net-
ionic equation of the overall reaction.

Net-ionic equation: ___________________________________

EXERCISES:

1. You have tested experimentally the pH of 0.10 M NaH\(_2\)PO\(_4\) solution. How would you
determine theoretically whether it is acidic or basic?

Given: \(K_{a1}\) for H\(_3\)PO\(_4\)= 6.9 x 10\(^{-3}\), \(K_{a2}\) for H\(_2\)PO\(_4\)^- = 6.3 x 10\(^{-8}\)

Hint: Write the two possible reactions of H\(_2\)PO\(_4\)^- with H\(_2\)O

a) \(H_2PO_4^- + H_2O \rightleftharpoons \) __________ + OH\(^-\) \hspace{1cm} \(K_b\) for H\(_2\)PO\(_4\)^- = \(\frac{K_w}{K_{a1}\) for H\(_3\)PO\(_4\)\}

\(K_b = \) ______________

b) \(H_2PO_4^- + H_2O \rightleftharpoons \) __________ + H\(_3\)O\(^+\) \hspace{1cm} \(K_{a2}\) for H\(_2\)PO\(_4\)^- = _______

\(K_{a2}\) for H\(_2\)PO\(_4\)^- = _______

Compare the \(K\) values for the above equilibrium reactions, hence predict whether the
solution is acidic or basic. Answer: _________________

Check your answer against the measured value of 0.10 M NaH\(_2\)PO\(_4\) on page 5.
The measured pH value is ________; the solution is ________; (acidic, or basic)
2. For each of the salts below, indicate whether its water solution would be acidic, basic or neutral. Write an equilibrium equation for any reaction that may occur in water.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Acidic, basic, or neutral</th>
<th>Write an equilibrium equation for any reaction that may occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(HSO₄)₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiBr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₃PO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al(NO₃)₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNO₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeCl₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Apply the following information about the acid ionization constants:
 K_a^1 for H_2S is 1.0×10^{-7} and K_a^2 for HS^- is 1.3×10^{-13}
 to predict whether $NaHS (aq)$ is acidic, basic, or neutral. You must show the setup.
 Setup:

 Answer: $NaHS$ is ______ because __________________
 (acidic, basic, or neutral)

4. Consider the following acid ionization constants:
 K_a for HF is 7.2×10^{-4} and K_a for $HOCl$ is 3.5×10^{-8}
 Which salt will hydrolyze more, $KF (aq)$ or $KOCl (aq)$?
 Setup: Write the equilibrium equations and calculate the K values.

 Answer: ____________ will hydrolyze more, because ________________

5. Which salt is expected to hydrolyze more, $NH_4OCl (aq)$ or $NaOCl (aq)$? **Explain** why.
 Answer: ______________ will hydrolyze more, because __________________