Trig Unit 1 Objective 3
April 16, 2010

• Evaluate inverse trig function for memorized values without a calculator.
• Evaluate inverse trig function for other values with a calculator.
Steps to find an inverse

1. Think inverse trig with Absolute value, e.g. $\sin^{-1}(-1/2)$, think $\sin^{-1}(1/2)$ first, and use it to find the reference angle.

2. Look at the sign (\pm) to determine which quadrants.

3. Use reference angle and quadrant(s) to get answer(s)

You may have more than one answer; but your calculator will always only give you one answer.

Ex 1: Solve for θ: $\sin \theta = -\frac{1}{2}$ while $0^\circ \leq \theta < 360^\circ$

 1. $\sin^{-1}(-\frac{1}{2})$, 30° is reference angle
 2. Quadrant: III, IV
 3. Answer: 210°, 330°

Ex 2: $\cos \theta = \frac{\sqrt{2}}{2}$ while $0 \leq \theta < 2\pi$

 1. The reference angle is $\pi/4$
 2. Quadrant: I, IV
 3. Answer: $\pi/4$, $7\pi/4$

You do: $\sin \theta = -\frac{\sqrt{3}}{2}$ while $0 \leq \theta < 2\pi$ (Ref angle: $\pi/3$, Quad: III or IV; Answer: $4\pi/3$ or $5\pi/3$)

$\cos \theta = -\frac{\sqrt{2}}{2}$ while $0^\circ \leq \theta < 360^\circ$ (Ref angle: 45°, Quad: II, III; Answer: 135° or 225°)
Inverses of Axis Angles

• When the value of trig function is equal to 0, 1, or −1, think about North, South, East, and West.

• Ex 3
 – a. \(\sin \theta = 0 \), while \(0^\circ \leq \theta < 360^\circ \)
 – b. \(\tan \theta = 0 \), while \(0^\circ \leq \theta \leq 360^\circ \)

• You do: E

 (1) \(\cos \theta = 0 \), while \(0 \leq \theta < 2\pi \)

 Answer: \(\theta = \pi/2 \) or \(3\pi/2 \)

• (2) \(\sin \theta = −1 \), while \(0^\circ \leq \theta < 360^\circ \)

 Answer: \(\theta = 270^\circ \)
More Examples

- **Ex 4:** $\cos \theta = -0.17$, while $0^\circ \leq \theta < 360^\circ$

 - Reference angle is: 80°

 - Quadrant: II and III

 - Answer: $100^\circ, 260^\circ$

 - Note: If you use calculator, calculator only gives you 100°

- **Ex 5:** $\sin \theta = -0.3$, while $0^\circ \leq \theta < 360^\circ$

 - Reference angle is: 17°

 - Quadrant: III and IV

 - Answer: $197^\circ, 343^\circ$

 - Note: If you use calculator, calculator only gives you -17° (which is 343°)
More Examples

• Ex 6: $\cos \theta = -0.3$ while $0 \leq \theta < 2\pi$
 Answer: 1.88 or 4.41

• You do: $\sin \theta = -0.78$ while $0 \leq \theta < 2\pi$
 Answer: 4.04 or 5.39

• Ex 7: $\tan \theta = 11.4$ while $0^\circ \leq \theta < 360^\circ$
 Answer: 85° or 265°

• Ex 8: $\sec \theta = 3.25$ while $0^\circ \leq \theta < 360^\circ$
 Answer: 72° or 288°
More Examples

• \(\sin \theta = -\frac{\sqrt{2}}{2} \) \(0 \leq \theta < 2\pi \) \(\text{Answer: } \frac{5\pi}{4} \text{ or } \frac{7\pi}{4} \)

• \(\cos \theta = \frac{\sqrt{3}}{2} \) \(0 \leq \theta < 2\pi \) \(\text{Answer: } \frac{\pi}{6} \text{ or } \frac{11\pi}{6} \)

• \(\sin \theta = 0 \) \(0^\circ \leq \theta < 720^\circ \) \(\text{Answer: } 0^\circ, 180^\circ, 360^\circ, 540^\circ \)

• \(\sin \theta = -0.358 \) \(0 \leq \theta < 2\pi \) \(\text{Answer: ref } \angle = 0.366, \theta = 3.51 \text{ or } 5.92 \)

• \(\cos \theta = -0.421 \) \(0 \leq \theta < 2\pi \) \(\text{Answer: ref } \angle = 1.14, \theta = 2.00 \text{ or } 4.28 \)

• \(\tan \theta = -21.12 \) \(0 \leq \theta < 2\pi \) \(\text{Answer: ref } \angle = 1.52, \theta = 1.62 \text{ or } 4.76 \)
The Unit Circle

- $\pi/2$ (90°) $(0, 1)$
- $2\pi/3$ (120°) $(-1/2, \sqrt{3}/2)$
- $\pi/3$ (60°) $(1/2, \sqrt{3}/2)$
- $\pi/4$ (45°) $(\sqrt{2}/2, \sqrt{2}/2)$
- $5\pi/6$ (150°) $(-\sqrt{3}/2, 1/2)$
- $\pi/6$ (30°) $(\sqrt{3}/2, 1/2)$
- π (180°) $(-1, 0)$
- $7\pi/6$ (210°) $(-\sqrt{3}/2, -1/2)$
- $11\pi/6$ (330°) $(\sqrt{3}/2, -1/2)$
- $5\pi/4$ (225°) $(-\sqrt{2}/2, -\sqrt{2}/2)$
- $3\pi/2$ (270°) $(0, -1)$
- $4\pi/3$ (240°) $(-1, -\sqrt{3}/2)$
- $5\pi/3$ (300°) $(1/2, -\sqrt{3}/2)$
- $7\pi/4$ (315°) $(\sqrt{2}/2, -\sqrt{2}/2)$
- 0 & 2π radians $0°$ & $360°$ $(1, 0)$
Positive: \(\sin, \csc \)
Negative: \(\cos, \tan, \sec, \csc, \cot \)