Objective 0: (review)
- Set up and solve trig word problems involves right triangles
- Fill in chart and evaluate sin, cos, tan of 30° ($\pi/6$), 45° ($\pi/4$), 60° ($\pi/3$) without a calculator

Definition of trig function:
- $\sin \theta = \text{Opposite}/\text{Hypotenuse}$
- $\cos \theta = \text{Adjacent}/\text{Hypotenuse}$
- $\tan \theta = \text{Opposite}/\text{Hypotenuse}$

SOH – CAH – TOA

Ex.

\[
\begin{array}{c}
24 \\
5
\end{array}
\]

Ex. $\tan 2^\circ = 200/x$ $\Rightarrow x = 200/ \tan 2^\circ = 5727.3$

You need to memorize the following values:

<table>
<thead>
<tr>
<th></th>
<th>30° ($\pi/6$)</th>
<th>45° ($\pi/4$)</th>
<th>60° ($\pi/3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sin</td>
<td>$1/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$\sqrt{3}/2$</td>
</tr>
<tr>
<td>\cos</td>
<td>$\sqrt{3}/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>\tan</td>
<td>$\sqrt{3}/3$</td>
<td>1</td>
<td>$\sqrt{3}$</td>
</tr>
</tbody>
</table>

The following are the definition of six trigonometric functions for a right triangle:

1. $\sin \theta = \text{opposite}/\text{hypotenuse}$
 (sin is short for sine)
2. $\cos \theta = \text{adjacent}/\text{hypotenuse}$
 (cos is short for cosine)
3. $\tan \theta = \text{opposite}/\text{adjacent}$
 (tan is short for tangent)
4. $\csc \theta = \text{hypotenuse}/\text{opposite} = 1/\sin \theta$
 (csc is short for cosecant, and it is reciprocal of sine)
5. $\cot \theta = \text{adjacent}/\text{opposite} = 1/\tan \theta$
 (cot is short for cotangent, and it is reciprocal of tangent)
6. $\sec \theta = \text{hypotenuse}/\text{adjacent} = 1/\cos \theta$
 (sec is short for secant, and it is reciprocal of cosine)
Example of six trigonometric functions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\sin \theta = \frac{3}{5})</td>
</tr>
<tr>
<td>2.</td>
<td>(\cos \theta = \frac{4}{5})</td>
</tr>
<tr>
<td>3.</td>
<td>(\tan \theta = \frac{3}{4})</td>
</tr>
<tr>
<td>4.</td>
<td>(\csc \theta = \frac{5}{3})</td>
</tr>
<tr>
<td>5.</td>
<td>(\sec \theta = \frac{5}{4})</td>
</tr>
<tr>
<td>6.</td>
<td>(\cot \theta = \frac{4}{3})</td>
</tr>
</tbody>
</table>

Activity in class: Color the unit circle with the following direction:

1. color the line red with the angle which is multiple of 90°
2. color the line blue with the angle which is multiple of 45°
3. color the line green with the angle which is multiple of 60°
4. color the line yellow with the angle which is multiple of 30°

4-13-10 Notes

Trig Unit 1 Objectives

- Draw angles in standard position and find co-terminal angles
- Find reference angles
- Convert between radians and degrees

Angles in standard position – An angle has initial side and terminal side, an angle is in standard position if the initial side is on x-axis.

An angle is **positive** if measured **counterclockwise** and an angle is **negative** if measured **clockwise**.

Example:

Co-terminal angles: Angles that have the same terminal side are called co-terminal angles.

Example: (1) 40° and –320° are co-terminal angles, you can find the co-terminal angles by adding ±360°

You do: find the co-terminal angles for 210°: Answers: −150°, 570°, 930°, −510°, ….etc

Reference Angles: The angles measured from the terminal side to the x-axis (always positive and less than 90°).

Example: Find the reference angle for \(\theta = 150° \);

Answer: 30° is the reference angle for 150°. (= 180° − 150°)

Example: Find the reference angle for \(\theta = 235° \);

Answer: 55° is the reference angle for 235°. (= 235° − 180°)

You do: find the reference angle for 320°. Answer: 40° is the reference angle for 320°.

Measurement of an angle: the measurement of an angle can be in degrees (denoted by “) or radians. Remember that a circle has 360° arc.

Unit circle: A circle is called a **unit circle** if the radius is one unit. The unit circle has circumference 2\(\pi \) which is the same as 360° arc length.

Radian: One radian is the angle measurement for \(\theta \) if the arc length is the same as the radius. The following figure is a unit circle with radius one and the arc length AB is 1

Conversion between degrees to radians: The ratio between degrees and radian is 180° : \(\pi \)

Conversion from degrees to radians: you multiply \(\pi/180° \)

Example: Convert 200° to radians

Solution: \(200° \times \pi/180° = 10\pi/9 \)

Conversion from radians to degrees: you multiply 180°/\(\pi \)

Example: Convert \(2\pi/3 \) to degrees

Solution: \(2\pi/3 \times 180°/\pi = 120° \)

Example: Convert 2 radians to degree

Solution: \(2 \times 180°/\pi = 360°/\pi \)

Example: Convert 330°t to radians

Solution: \(330° \times \pi/180° = 11\pi/6 \)

Activity: fill in the unit circle with radians.
4-14-10 Activity:

Fill in the table values for sin, cos and tan with 30° ($\pi/6$), 45° ($\pi/4$), 60° ($\pi/3$), then complete the unit circle with the (x, y) coordinate.

<table>
<thead>
<tr>
<th>cos $\theta = x/1 = x$</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta = y/1 = y$</td>
<td>θ</td>
</tr>
</tbody>
</table>

Thus the coordinate on the unit circle (x, y) is the same as (cos θ, sin θ)

4-16-10

Trig Unit 1 Objective 2

- Evaluate trig functions which are multiple of 30°, 45°, 60°, 90° in degrees, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$ in radians without a calculator.

Unit Circle is a circle with radius of one unit. As mentioned above, cos $\theta = x$, sin $\theta = y$.

The above figure indicate the sign of the trig functions:
A-S-T-C is an acronym: you can memorize as: All Students Take Calculus.

What does this acronym do for you? It helps you to decide the positive sign of the values of all six trigonometric functions.
A – all six trig functions have positive values in Quadrant I.
S – only sin and the reciprocal of sin (i.e. csc) have positive values in Quadrant II.
T – only tan and the reciprocal of tan (i.e. cot) have positive values in Quadrant III.
C – only cos and the reciprocal of cos (i.e. sec) have positive values in Quadrant IV.

Steps to find the values of a trig function:
1. Determine if the angle is an **axis angle** (the term **axis angle** was invented by Ms. Brice) which means the angle has initial and terminal sides on either x – axis or y – axis in standard position. (note that axis angle does not have reference angle, and reference angle is always less than 90°)
2. If it has a reference angle, then
 a. Use quadrant to find the sign “+” or “−”.
 b. Find the reference angle, use the reference angle to find the value and use the sign found in (a) to determine the value.
 c. Use the chart.

Example: Find sin (150°) = ?
Solution:
 a. 150° is in 2\(^{nd}\) quadrant, since we are looking for sine and sine is positive “+” (A-S-T-C).
 b. The reference angle is 30°, the value of sin (150°) is ½.
 c. Use the unit circle, the value is 1/2

Example: Find cos (150°) = ?
Solution:
 a. 150° is in 2\(^{nd}\) quadrant, since we are looking for cosine and cosine is negative “−” (A-S-T-C).
 b. The reference angle is 30°, the value of sin (150°) is \(\sqrt{3}/2\).
 c. Use the unit circle, the value is \(\sqrt{3}/2\)

3. If it is an axis angle, i.e. 0, \(\pi/2\), \(\pi\), 3\(\pi/2\), 2\(\pi\) or 0°, 90°, 180°, 270°, 360°, then use the unit circle values. Examples:
 a. sin \((\pi/2)\) = 1
 b. cos \((\pi/2)\) = 0
 c. sin \(3\pi/2\) = −1

White board activities:
1. Find the coordinates of the following angles on the unit circle: 150°, 225°, 300°
2. Use the unit circle chart to find the angles with the following coordinates: (−1/2, \(\sqrt{3}/2\)), (−\(\sqrt{2}/2\), −\(\sqrt{2}/2\)), (1/2, −\(\sqrt{3}/2\))

Find the angle “?” in the interval: 0° ≤ \(\theta\) < 360° or 0 ≤ \(\theta\) <2\(\pi\)

3. Find sin \(?° = \frac{1}{2}\) in degrees, i.e. find the angle \(\theta\) such that sin\(\theta\) = \(\frac{1}{2}\) **Solution:** 30° or 150°
4. Find cos \(?° = −\sqrt{3}/2\) in radians. **Solution:** 5\(\pi/6\) or 7\(\pi/6\)
5. Find sin \(?° = −\sqrt{2}/2\) in degrees. **Solution:** 225° or 315°
6. Find cos \(?° = −1\). **Solution:** \(\pi\)