8.1 The Cartesian Coordinate System

French mathematician René Descartes is credited for uniting geometry and algebra his development of the Cartesian Coordinate System. As a result of his work, we are now able to find a visual representation of an equation.

Let’s begin by describing the basics behind the Cartesian Coordinate System which is formed by intersecting two number lines at a $90\degree$ angle at the zero location of each. This point of intersection is called the origin.

The horizontal number line is called the x-axis and the vertical number line is called the y-axis.

Each point in the Cartesian Coordinate System is identified with an ordered pair of numbers.

To locate a point, we need to know the x-coordinate and y-coordinate. The x-coordinate is the horizontal distance from the origin and the y-coordinate is the vertical distance from the origin.

The sign of the coordinate indicates which direction to move.

A positive x-coordinate means move right x units. A positive y-coordinate means move up y units.
A negative x-coordinate means move left x units. A negative y-coordinate means move down y units.
If the x-coordinate is zero, there is no movement. If the y-coordinate is zero, there is no movement.

The graph (or plot) of an ordered pair is a closed circle drawn at the location of the point $P(x, y)$.

2015 Campeau
Example 1: Plot the point \(P(6, 8) \).

Solution:

Start at the origin.

Move **right** along the horizontal \(x \)-axis to 6.

Move **up** 8 units until aligned with the 8 on the vertical \(y \)-axis.

Draw a **closed circle** at the location \((6, 8) \).

Label the point with the letter \(P \).

Note: We always label each point we plot with the letter given in the directions. If there is no letter given, then write the coordinates \((x, y)\) near the point.

You Try It 1:

a) Plot the point \(Q(9, 4) \).

b) Plot the point \(R(2, 6) \).
Example 2: Plot the point $A(-3, 4)$.

Solution:

Start at the origin.

Move **left** along the horizontal x-axis to -3.

Move **up** 4 units until aligned with the 4 on the vertical y-axis.

Draw a **closed circle** at the location $(−3, 4)$.

Label the point with the letter A.

You Try It 2:

a) Plot the point $B(-5, 8)$.

b) Plot the point $C(-9, 1)$.

2015 Campeau
Example 3: Plot the point $D(-5, -7)$.

Solution:

Start at the origin.

Move **left** along the horizontal x-axis to -5.

Move **down** 7 units until aligned with the -7 on the vertical y-axis.

Draw a **closed circle** at the location $(-5, -7)$.

Label the point with the letter D.

You Try It 3:

a) Plot the point $E(-2, -4)$.

b) Plot the point $F(-7, -3)$.

2015 Campeau
Example 4: Plot the point \(U (0, 4) \).

Solution: Start at the origin.

The 0 indicates that we do not move along the horizontal \(x \)-axis.

Move up along the vertical \(y \)-axis until aligned with the 4.

Draw a closed circle at the location \((0, 4)\).

Label the point with the letter \(U \).

You Try It 4: a) Plot the point \(V (0, -4) \).

b) Plot the point \(W (0, 9) \).
Example 5: Plot the point $G(-9, 0)$.

Solution: Start at the origin.

Move left along the horizontal x-axis to -9.

The 0 indicates that we do not move along the vertical y-axis.

Draw a closed circle at the location $(-9, 0)$.

Label the point with the letter G.

You Try It 5: a) Plot the point $H(9, 0)$.

b) Plot the point $I(1, 0)$.
Example 6: Plot the following points on the same set of axes.

a) \(O(0, 0)\)
b) \(P(5, -6)\)
c) \(Q\left(-\frac{4}{2}, 1\right)\)
d) \(R\left(0, \frac{7}{2}\right)\)

Solution:

a) \((0, 0)\) are the coordinates of the origin. There is no horizontal nor vertical movement.

b) Start at the origin. Move 5 units to the right, then move 6 units down.

c) Start at the origin. Move \(\frac{4}{2}\) units to the left, then move 1 unit up.

d) \(\left(0, \frac{7}{2}\right)\) is the same as \(\left(0, \frac{3}{2}\right)\). Start at the origin. There is no horizontal movement. Move \(\frac{3}{2}\) units up.

You Try It 6: Plot the following points on the same set of axes.

a) \(S(-8, 0)\)
b) \(T(1, 7)\)
c) \(U\left(\frac{11}{2}, -3\right)\)
d) \(V\left(-8, -\frac{4}{2}\right)\)
Example 7: Use the graph below to identify the coordinates of the points J and K.

![Graph](image)

Solution: This example emphasizes the importance of reading a graph carefully.

To find the coordinates of each point, draw a vertical and horizontal line from the point to each axis to accurately identify each coordinate.

Point J has x-coordinate -5 and y-coordinate 5. So, the coordinates of J are $(-5, 5)$.

Point K has x-coordinate 2 and y-coordinate -6. So, the coordinates of K are $(2, -6)$.
You Try It 7: Use the graph below to identify the coordinates of the points L, M, N, and P.

Example 8: Plot the following points on the same set of axes. Connect the points in the order given to form a closed geometric figure. Then find the area of the figure formed.

$A(-2, -2) \quad B(-2, 7) \quad C(1, 7) \quad D(1, -2)$

Solution:

The four points form a rectangle. **Rectangle $ABCD$ has length 9 units and width 3 units.**

Area of Rectangle $ABCD$: $A = lw$

$= (9 \text{ units})(3 \text{ units})$

$= 27 \text{ square units}$
You Try It 8: Plot the following points on the same set of axes. Connect the points in the order given to form a closed geometric figure. Then find the area of the figure formed.

\[A \left(-8, -4 \right) \quad B \left(-8, 2 \right) \quad C \left(3, 2 \right) \quad D \left(3, -4 \right) \]

Example 9: Plot the following points on the same set of axes. Connect the points in the order given to form a closed geometric figure. Then find the area of the figure formed.

\[E \left(3, -4 \right) \quad F \left(0, 7 \right) \quad G \left(6, 7 \right) \]

Solution:

The three points form a triangle. Triangle EFG has base 6 units and height 11 units.
Area of Triangle EFG: $A = \frac{1}{2}bh$

$= \frac{1}{2}(6 \text{ units})(11 \text{ units})$

$= 33 \text{ square units}$

You Try It 9: Plot the following points on the same set of axes. Connect the points in the order given to form a closed geometric figure. Then find the area of the figure formed.

$E(-6, 0)$ $F(2, 0)$ $G(2, -7)$