Welcome to Calculus

Section 2.6 Related Rates
Section 2.6 Related Rates

- Warm up
 1. Find dy/dt (implicitly) if $y^2 - 4y - t = -4$
 2. Find dy/dt from #1, if $y = 4$
 3. Find dy/dt (implicitly) if $y^2 - 4y - t^2 = -4$
 4. Suppose x and y are both differentiable functions of t and if $y = x^2 + 3$. Solve dy/dt (in terms of variable x and dx/dt.)
 5. From #4 Find dy/dt given $x = 1$ and $dx/dt = 2$
 6. If $V = \pi r^2 h$, where r and h both are differentiable function of t. Find dV/dt implicitly.
Section 2.6 Overview

- **Objective:** After this lesson, you will be able to:
 - Find a related rate by applying implicit derivative and chain rule.
 - Use related rates to solve real-life problems

- Examples of application:
 - When the water is drained out of a conical tank
 - When the oil spills, it creates a circular pool
 - When you drop a pebble into a calm pond, the water ripples in the form of concentric circles
 - When you watching a train passing by, your eye moves with the train
 - When you pump the air into a spherical balloon with certain rate cubic feet per minute
 - When the ground radar tracks the coming airplane
 - When a television camera taking picture of the shuttle launches.

- The rate change is like we can freeze the time at that moment and finding the rate at that moment.
2.6a Find rate change

- Example 1: If $y = x^2 - 3x + 2$,

 a. find dy/dt when $x = 4$ and $dx/dt = 3$
 b. find dx/dt when $x = 3$ and $dy/dt = 2$

<table>
<thead>
<tr>
<th>Equation</th>
<th>Find</th>
<th>Given</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example 2: if $x^2 + y^2 = 25$

 a. Find dy/dt when $x = 3$, $y = 4$, and $dx/dt = 8$
 b. Find dx/dt when $x = 4$, $y = 3$, and $dy/dt = -2$
Mathematical model of rate change

Suppose you drive a car from point A to B, the distance your traveled is x, and with the speed of 50 miles per hour, how would you write in mathematical model for the rate change of distance?

Suppose the water is being pumped into a swimming pool at a rate of 10 cubic meters per hour, what is the mathematical model for the change of volume of the water in swimming pool?

Suppose a gear is revolving at a rate of 25 revolutions per minute, what is the mathematical model for the rate change of the angle of the gear? What is one revolution in radians? A gear is revolving with an angle θ
Rate change of Distance

- Example 3: a point is moving along the graph of the given function such that $dx/dt = 2\text{cm per second}$. Find dy/dt for the given values of x
 a. $y = x^2 - 1$, when $x = -2$
 b. $y = \frac{1}{1+x^2}$ when $x = -2$
 c. $y = \sin x$ when $x = \pi/6$, or $x = \pi/4$, or $x = 0$.
 d. Find the rate change of the distance between the origin and a moving point on the graph $y = \sin x$, if $dx/dt = 2$ centimeter per second.

- If you have a linear function $y = ax + b$. If x changes at a constant rate with respect to time, does y change at a constant rate with respect to time? If so, does y change at the same rate as x?
Solving problems with areas

Example 1: A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. If the radius of outside ripple is increasing at a constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the total area A of the disturbed water changing?

Notations:

- Area is unit square
- Rate of area (increasing or decreasing) with respect to time is denoted by $\frac{dA}{dt} = \text{unit/time (per second, per minute or per hour)}$

Solution:

- This is a circle area, thus A (area) = πr^2, i.e. A depends on r. The value of r depends on time. Thus both A and r are function of r implicitly. Since derivative is rate change, and we are interested the change with respect to time, thus we need to take derivative implicitly.
Example 2: Oil Spill Problem

- An oil spill created a circular pool whose area increased at a rate of $30\pi m^2$/minutes. How fast was the radius of the pool increasing when the radius was 5 meters?

- Solution:
Homework Assignment for 2.6a

- Homework for 2.6a, #1-7 odd, 11-17 odd.